

## **Human Factors**



research and technology division

# Human Fatigue Countermeasures: Space

#### **Objective**

To minimize the adverse effects of fatigue and maximize performance and alertness during flight operations, thereby maintaining and improving the safety margin.

### **Approach**

Develop fatigue countermeasures, educational tools, incident/accident investigation methods, and provide technical input to national policy considerations. Conduct research that capitalizes on laboratory-based experimental research, flight simulations, and field research during regular operations. process involved over 300 transport



pilots participating in observational studies, interview studies, part-task simulations, high-fidelity simulations, and a flight test.

#### **Impact**

Reduction of fatigue and related performance problems through research on cockpit rest and activity periods, duty/rest cycles in commercial aviation, and altertness management technologies. Research includes:

- The Ames Fatigue Countermeasures Group participated in two Neurolab Space Shuttle mission projects, STS-90 flown in April 1998 and STS-95 in October 1998. The project, "Clinical Trial of Melatonin as a Hypnotic for Neurolab Crew," studied the effects of spaceflight on sleep and its regulation by the bodyís internal clock, melatonin as a sleep aid, and to determine the correlation between respiratory changes and in-flight sleep
- Alertness management will be applied to Mars Exploration Rover schedules and project staff and scientists will be briefed on methods to mitigate fatigue and increase probability of mission success.
- A biomathematical model to predict human performance during long duration space flight is being developed as an aid in planning astronaut work and rest schedules.

POC: Melissa Mallis, Ph.D..

URL: http://humanfactors.arc.nasa.gov/ihs/

E-mail: Melissa.M.Mallis@nasa.gov



